
The abyssal ocean possesses vast reserves of minerals such as nickel and cobalt, many times those of all global land-based reserves, in the form of polymetallic nodules. Trillions of these nodules, which took millions of years to accrete, are openly strewn across the abyssal plains. In recent years there has been a substantial increase in activities on the topic of deep-sea mining, with 18 exploration licenses granted in the Clarion Clipperton Fracture Zone (CCFZ), an extensive area of the Pacific Ocean between Hawaii and Mexico. Driving forces behind the ramp-up in activity include an increase in demand for electric vehicles and increasing urbanization. But many have expressed concerns about the potential impact of deep-sea mining activities on the abyssal ocean environment. This article provides an overview of the topic of deep-sea mining, detailing the current state-of-knowledge and consider the outlook in the coming years.
News
- Scientists measure plume stirred up by deep-sea-mining vehicleResults of a recent field study, published as the cover article in Science Advances, reveals that a fundamental fluid dynamic process, turbidity current dynamics, is a key component for setting the scale of impact of proposed deep-sea mining operations….
Publications
- In situ optical measurement of particles in sediment plumes generated by a pre-prototype polymetallic nodule collector
El Mousadik, S., Ouillon, R., Muñoz-Royo, C., Slade, W., Pottsmith, C., Leeuw, T., Alford, M.H., Mikkelsen O.A., & Peacock, T
Scientific Reports, 14, 23894 (2024)
This study presents in situ, high-resolution optical measurements of particle size distributions (PSD) within sediment plumes generated by a pre-prototype deep seabed nodule collector vehicle operating in the abyssal Pacific Ocean. These measurements were obtained using a cutting-edge instrument, the LISST-RTSSV sensor. The data collected in situ reveal marked differences compared to previously reported laboratory-based, ex situ measurements. The grain size and other key particle shape characteristics are found to be dependent on multiple factors, including the collector vehicle maneuvers, the time elapsed following sediment discharge, and the complex hydrodynamic processes that generate the sediment in suspension. Significantly, the PSD from a highly complex succession of straight-line maneuvers converges to that of the canonical case of a simple straight-line driving maneuver within a timescale of ten minutes. Our results underscore the importance of parameterizing sediment plume transport models based on well-informed, comprehensive PSDs of detrained suspended sediment measured in situ at adequate timescales and in regions no longer strongly influenced by active and complex hydrodynamic processes.
- Oceanic bottom mixed layer in the Clarion-Clipperton Zone: potential influence on deep-seabed mining plume dispersal
Chen, SY., Ouillon, R., Muñoz-Royo, C. et al.
Environ Fluid Mech 23, 579–602 (2023)
The oceanic bottom mixed layer (BML) is a well mixed, weakly stratified, turbulent boundary layer. Adjacent to the seabed, the BML is of intrinsic importance for studying ocean mixing, energy dissipation, particle cycling and sediment-water interactions. While deep-seabed mining of polymetallic nodules is anticipated to commence in the Clarion-Clipperton Zone (CCZ) of the northeastern tropical Pacific Ocean, knowledge gaps regarding the form of the BML and its potentially key influence on the dispersal of sediment plumes generated by deep-seabed mining activities are yet to be addressed. Here, we report recent field observations from the German mining licence area in the CCZ that characterise the structure and variability of the BML locally. Quasi-uniform profiles of potential temperature extending from the seafloor reveal the presence of a spatially and temporally variable BML with an average local thickness of approximately 250 m. Deep horizontal currents in the region have a mean speed of 3.5 cm s−1 and a maximum speed of 12 cm s−1 at 18.63 ms above bottom over an 11 month record. The near-bottom currents initially have a net southeastward flow, followed by westward and southward flows with the development of complex, anticyclonic flow patterns. Theoretical predictions and historical data show broad consistency with mean BML thickness but cannot explain the observed heterogeneity of local BML thickness. We postulate that deep pressure anomalies induced by passing surface mesoscale eddies and abyssal thermal fronts could affect BML thickness, in addition to local topographic effects. A simplified transport model is then used to study the influence of the BML on the interplay between turbulent diffusion and sediment settling in the transport of deep-seabed mining induced sediment plumes. Over a range of realistic parameter values, the effects of BML on plume evolution can vary significantly, highlighting that resolving the BML will be a crucial step for accurate numerical modelling of plume dispersal.
- The fluid mechanics of deep-sea mining
Peacock, T. & Ouillon, R.
Annual Review of Fluid Mechanics, 55, 403-430 (2023)
Fluid mechanics lies at the heart of many of the physical processes associated with the nascent deep-sea mining industry. The evolution and fate of sediment plumes that would be produced by seabed mining activities, which are central to the assessment of the environmental impact, are entirely determined by transport processes. These processes, which include advection, turbulent mixing, buoyancy, differential particle settling, and flocculation, operate at a multitude of spatiotemporal scales. A combination of historical and recent efforts that combine theory, numerical modeling, laboratory experiments, and field trials has yielded significant progress, including assessing the role of environmental and operational parameters in setting the extent of sediment plumes, but more fundamental and applied fluid mechanics research is needed before models can accurately predict commercial-scale scenarios. Furthermore, fluid mechanics underpins the design and operation of proposed mining technologies, for which there are currently no established best practices.
- Advection-diffusion-settling of deep-sea mining sediment plumes. Part 1: Midwater plumes
Ouillon, R., …, & Peacock, T.
FLOW, 2, E22 (2022)
The evolution of midwater sediment plumes associated with deep-sea mining activities is investigated in the passive-transport phase using a simplified advection–diffusion-settling model. Key metrics that characterize the extent of plumes are defined based on a concentration threshold. Namely, we consider the volume flux of fluid that ever exceeds a concentration threshold, the furthest distance from and maximum depth below the intrusion where the plume exceeds the threshold, and the instantaneous volume of fluid in excess of the threshold. Formulas are derived for the metrics that provide insight into the parameters that most strongly affect the extent of the plume. The model is applied to a reference deep-sea mining scenario around which key parameters are varied. The results provide some sense of scale for deep-sea mining midwater plumes, but more significantly demonstrate the importance of the parameters that influence the evolution of midwater plumes. The model shows that the discharge mass flow rate and the concentration threshold play an equal and opposite role on setting the extent of the plume. Ambient ocean turbulence and the settling velocity distribution of particles play a lesser yet significant role on setting the extent, and can influence different metrics in opposing ways.
- Advection-diffusion-settling of deep-sea mining sediment plumes. Part 2: Collector plumes
Ouillon, R., …, & Peacock, T.
FLOW, 2, E23 (2022)
We develop and investigate an advection–diffusion-settling model of deep-sea mining collector plumes, building on the analysis of midwater plumes in Part 1. In the case of collector plumes, deposition plays a predominant role in controlling the mass of sediment in suspension, and thus on setting the extent of the plume. We first discuss the competition between settling, which leads to deposition, and vertical turbulent diffusion, which stretches the plume vertically and reduces deposition. The time evolution of the concentration at the seabed is found to be a highly nonlinear function of time that depends non-trivially on the ratio of diffusion to settling time scales. This has direct implications for the three extent metrics considered, namely the instantaneous area of the seabed where a deposition rate threshold is exceeded, the furthest distance from the discharge where the plume exceeds a concentration threshold and the volume flux of fluid in the water column that ever exceeds a concentration threshold. Unlike the midwater plume, the particle velocity distribution of the sediment has the greatest influence on the extent metrics. The turbulence levels experienced by the plume also markedly affects its extent. Expected variability of turbulence and particle settling velocity yields orders of magnitude changes in the extent metrics.